84 research outputs found

    Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector

    Get PDF
    Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium spp. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial compounds exclusively to Plasmodium-infected cells, thus increasing drug efficacy and minimizing the induction of resistance to newly developed therapeutic agents. Polyamidoamine-derived nanovectors combine into a single chemical structure drug encapsulating capacity, antimalarial activity, low unspecific toxicity, specific targeting to Plasmodium, optimal in vivo activity and affordable synthesis cost. After having shown their efficacy in targeting drugs to intraerythrocytic parasites, now polyamidoamines face the challenge of spearheading a new generation of nanocarriers aiming at the malaria parasite stages in the mosquito vector

    Detecting browser drive-by exploits in images using deep learning

    Get PDF
    Steganography is the set of techniques aiming to hide information in messages as images. Recently, stenographic techniques have been combined with polyglot attacks to deliver exploits in Web browsers. Machine learning approaches have been proposed in previous works as a solution for detecting stenography in images, but the specifics of hiding exploit code have not been systematically addressed to date. This paper proposes the use of deep learning methods for such detection, accounting for the specifics of the situation in which the images and the malicious content are delivered using Spatial and Frequency Domain Steganography algorithms. The methods were evaluated by using benchmark image databases with collections of JavaScript exploits, for different density levels and steganographic techniques in images. A convolutional neural network was built to classify the infected images with a validation accuracy around 98.61% and a validation AUC score of 99.75%

    Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial stragegy

    Get PDF
    One of the most important factors behind resistance evolution in malaria is the failure to deliver sufficiently high amounts of drugs to early stages of Plasmodium-infected red blood cells (pRBCs). Despite having been considered for decades as a promising approach, the delivery of antimalarials encapsulated in immunoliposomes targeted to pRBCs has not progressed towards clinical applications, whereas in vitro assays rarely reach drug efficacy improvements above 10-fold. Here we show that encapsulation efficiencies reaching N96% are achieved for the weak basic drugs chloroquine (CQ) and primaquine using the pH gradient loading method in liposomes containing neutral saturated phospholipids. Targeting antibodies are best conjugated through their primary amino groups, adjusting chemical crosslinker concentration to retain significant antigen recognition. Antigens from non-parasitized RBCs have also been considered as targets for the delivery to the cell of drugs not affecting the erythrocytic metabolism. Using this strategy, we have achieved unprecedented complete nanocarrier targeting to early intraerythrocytic stages of the malaria parasite for which there is a lack of specific extracellular molecular tags. Immunoliposomes studded with monoclonal antibodies raised against the erythrocyte surface protein glycophorin A were capable of targeting 100% RBCs and pRBCs at the low concentration of 0.5 μM total lipid in the culture, with N95% of added liposomes retained on cell surfaces. When exposed for only 15 min to Plasmodium falciparum in vitro cultures of early stages, free CQ had no significant effect on the viability of the parasite up to 200 nM, whereas immunoliposomal 50 nM CQ completely arrested its growth. In vivo assays in mice showed that immunoliposomes cleared the pathogen below detectable levels at a CQ dose of 0.5 mg/kg, whereas free CQ administered at 1.75 mg/kgwas, atmost, 40-fold less efficient. Our data suggest that this significant improvement is in part due to a prophylactic effect of CQ found by the pathogen in its host cell right at the very moment of invasion

    The SARS-CoV-2 Nucleoprotein Induces Innate Memory in Human Monocytes

    Get PDF
    The interaction of SARS-CoV-2 with the human immune system is at the basis of the positive or negative outcome of the infection. Monocytes and macrophages, which are major innate immune/inflammatory effector cells, are not directly infected by SARS-CoV-2, however they can react to the virus and mount a strong reaction. Whether this first interaction and reaction may bias innate reactivity to re-challenge, a phenomenon known as innate memory, is currently unexplored and may be part of the long-term sequelae of COVID-19. Here, we have tested the capacity of SARS-CoV-2 and some of its proteins to induce innate memory in human monocytes in vitro. Our preliminary results show that the Spike protein subunits S1 and S2 and the entire heat-inactivated virus have no substantial effect. Conversely, monocytes pre-exposed to the nucleocapsid N protein react to subsequent viral or bacterial challenges with an increased production of anti-inflammatory IL-1Ra, a response profile suggesting a milder response to new infections

    Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts

    Get PDF
    AbstractThe wide use of titanium dioxide nanoparticles (TiO2 NPs) in industrial applications requires the investigation of their effects on human health. In this context, we investigated the effects of nanosized and bulk titania in two different crystalline forms (anatase and rutile) in vitro. By colony forming efficiency assay, a dose-dependent reduction of the clonogenic activity of Balb/3T3 mouse fibroblasts was detected in the presence of rutile, but not in the case of anatase NPs. Similarly, the cell transformation assay and the micronucleus test showed that rutile TiO2 NPs were able to induce type-III foci formation in Balb/3T3 cells and appeared to be slightly genotoxic, whereas anatase TiO2 NPs did not induce any significant neoplastic or genotoxic effect. Additionally, we investigated the interaction of TiO2 NPs with Balb/3T3 cells and quantified the in vitro uptake of titania using mass spectrometry. Results showed that the internalization was independent of the crystalline form of TiO2 NPs but size-dependent, as nano-titania were taken up more than their respective bulk materials.In conclusion, we demonstrated that the cytotoxic, neoplastic and genotoxic effects triggered in Balb/3T3 cells by TiO2 NPs depend on the crystalline form of the nanomaterial, whereas the internalization is regulated by the particle size

    La simulación hidráulica como herramienta de apoyo a la toma de decisiones en Global Omnium

    Full text link
    [ES] La moderna gestión de los sistemas de abastecimiento de agua requiere el uso de modelos matemáticos como herramienta de soporte para la toma de decisiones, tanto en el ámbito de la planificación como en la operación diaria de la red. Los modelos son, además, claves para garantizar una gestión eficiente de los recursos hídricos y energéticos disponibles, así como una reacción rápida y segura frente a una situación de emergencia. Con este objetivo Global Omnium tiene implantado desde hace años en su Centro de Control de la red de abastecimiento a Valencia y su área metropolitana un modelo matemático de simulación hidráulica de la red capaz de trabajar en tiempo real. Una aplicación se encarga de almacenar y tratar la información recibida del sistema de telecontrol, unos 20.000 datos horarios por día, y de alimentar con ella el modelo para simular el comportamiento de la red bajo cualquier circunstancia, actuando así como un Sistema de Apoyo a la Toma de Decisiones (DSS). Los últimos avances, realizados en colaboración con el IIAMA de la UPV, se han orientado a mejorar las capacidades de simulación del modelo, a su calibración automática, y a integrar fugas y demandas dependientes de la presión.[EN] The modern management of water supply systems requires the use of mathematical models as a decision support system, both in the field of planning and in the daily network operation. Moreover models are key to the efficient management of available water and energy resources and to having a rapid and safe reaction to emergencies. Therefore, the water supply and distribution network of Valencia (Spain) and its metropolitan area has implanted for years in its Control Center a highly accurate hydraulic simulation model, able to work in real time, which is fed through the measures received from the remote control system, with approximately 20,000 hourly data per day. The model simulate the behavior of the network under any scenario, acting as a DSS. Recent advances, in collaboration with the IIAMA of UPV, are focused to improve the capabilities of the model, to keep the model permanently calibrated, and to consider pressure dependent leakage and demands.Conejos Fuertes, P.; Gamón, A.; Urban Torres, P.; Martínez Alzamora, F.; Alonso-Campos, J. (2017). La simulación hidráulica como herramienta de apoyo a la toma de decisiones en Global Omnium. Tecnoaqua. (26):46-53. http://hdl.handle.net/10251/104735S46532

    Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery.

    Get PDF
    The adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial drugs to Plasmodium-infected red blood cells (pRBCs). These new models include: (i) immunoliposome-mediated release of new lipid-based antimalarials; (ii) liposomes targeted to pRBCs with covalently linked heparin to reduce anticoagulation risks; (iii) adaptation of heparin to pRBC targeting of chitosan nanoparticles; (iv) use of heparin for the targeting of Plasmodium stages in the mosquito vector; and (v) use of the non-anticoagulant glycosaminoglycan chondroitin 4-sulfate as a heparin surrogate for pRBC targeting. The results presented indicate that the tuning of existing nanovessels to new malaria-related targets is a valid low-cost alternative to the de novo development of targeted nanosystems

    Possible roles of amyloids in malaria pathophysiology

    Get PDF
    The main therapeutic and prophylactic tools against malaria have been locked for more than a century in the classical approaches of using drugs targeting metabolic processes of the causing agent, the protist Plasmodium spp., and of designing vaccines against chosen antigens found on the parasite's surface. Given the extraordinary resources exhibited by Plasmodium to escape these traditional strategies, which have not been able to free humankind from the scourge of malaria despite much effort invested in them, new concepts have to be explored in order to advance toward eradication of the disease. In this context, amyloid-forming proteins and peptides found in the proteome of the pathogen should perhaps cease being regarded as mere anomalous molecules. Their likely functionality in the pathophysiology of Plasmodium calls for attention being paid to them as a possible Achilles' heel of malaria. Here we will give an overview of Plasmodium-encoded amyloid-forming polypeptides as potential therapeutic targets and toxic elements, particularly in relation to cerebral malaria and the blood-brain barrier function. We will also discuss the recent finding that the genome of the parasite contains an astonishingly high proportion of prionogenic domains

    Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery

    Get PDF
    The adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial drugs to Plasmodium-infected red blood cells (pRBCs). These new models include: (i) immunoliposome-mediated release of new lipid-based antimalarials; (ii) liposomes targeted to pRBCs with covalently linked heparin to reduce anticoagulation risks; (iii) adaptation of heparin to pRBC targeting of chitosan nanoparticles; (iv) use of heparin for the targeting of Plasmodium stages in the mosquito vector; and (v) use of the non-anticoagulant glycosaminoglycan chondroitin 4-sulfate as a heparin surrogate for pRBC targeting. The results presented indicate that the tuning of existing nanovessels to new malaria-related targets is a valid low-cost alternative to the de novo development of targeted nanosystems
    corecore